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In recent years, the cluster ensembles have been successfully used to tackle well known drawbacks of
individual clustering algorithms. Beyond the expected improvement provided by the averaging effect
of many clustering algorithms (clustering committee) aiming at the same goal, some interesting exper-
imental results also show that even committees of completely random partitions may lead to a useful
consensus. Another powerful finding in cluster ensemble research is that the blind criterion Averaged
Normalized Mutual Information seems to replace actual misclassification ratio, whenever labels are given
to actual clusters. In this work, we study what is behind these interesting results and the blind criterion,
and we use what we learn from this study to propose a new point of view for analysis and design of clus-
tering committees. The usefulness of this new perspective is illustrated through experimental results.
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1. Introduction

Clustering is a self-organized process that plays an important
role in a wide range of fields, ranging from typical applications,
as Pattern Recognition, Signal Compression (Duda et al., 2001),
and Knowledge Discovery in Databases (Mitra et al., 2002), to less
common ones such as communication channel estimation and/or
equalization (Montalvao et al., 2002). Roughly speaking, clustering
is aimed at partitioning a set of objects into groups that share some
kind of (predefined) similarity. Clearly, it is not a well-posed
problem.

In recent years, the success of ensemble methods for supervised
learning has motivated the development of ensemble methods for
unsupervised learning (Fred and Jain, 2005). At first glace, cluster-
ing ensembles just generate multiple partitions of a data set by
taking multiple looks at it. Thus, by combining the resulting parti-
tions, one can obtain a good data partitioning even when the clus-
ters are not compact and well separated. Indeed, according to
Strehl and Ghosh (2002), an ensemble is a multi-learner system
in which each learner tries to solve the very same task, and its
main goal is to improve overall accuracy and robustness in doing
this task. This point of view links the clustering ensemble to the
Connectionist paradigm (Feldman and Ballard, 1982) and its
redundant structures.
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However, far beyond the expected improvement provided by
the averaging effect of many redundant clustering algorithms
(clustering committee), some interesting experimental results also
show that even committees of completely random partitions (Fern
and Brodley, 2003; Topchy et al., 2005) may lead to useful consen-
sus. Another surprising finding is that, if we assume that data from
each cluster can be labeled (one label per cluster), and this label is
seen as a hidden parameter to be found by clustering analysis, the
blind' criterion Averaged Normalized Mutual Information (ANMI)
seems to replace the supervised label misclassification ratio (Strehl
and Ghosh, 2002).

In this work, we study what is behind these interesting results
and we reformulate the blind ANMI criterion into a Lagrangian
function. What we learn from this study is used to propose a
new point of view for analysis and design of clustering committees.

According to this proposed new point of view, clustering
ensembles play the role of an irregular space quantizer, thus map-
ping patterns in a new nonlinearly transformed space where clus-
ters are likely to be more compact and well separated. In this new
space, consensus finder plays the role of a conventional clustering
algorithm, although it uses distances between vectors of labels, in-
stead of continuous distances. Through this new perspective, we
also try to provide new understandings of how clustering ensem-
bles works. For instance, we show through simple reasoning and
some experiments how the paradigm from which committee
members come from affects clustering results.

1 Blind in the sense that actual labels are unknown.
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Moreover, we can also see clearly how diversity amongst com-
mittee members is necessary to provide useful space discretization
grids. The usefulness of this new perspective is illustrated through
experimental results.

Unfortunately, clustering ensembles is a wide field of research
and some relevant perspectives are not addressed in this work.
That is the case, for instance, of works where pattern spaces are di-
rectly transformed, such as in (Al-Razgan and Domeniconi, 2006),
where to cope with the high-dimensionality of data, a soft feature
selection procedure is proposed, the Locally Adaptive Clustering
(LAC). Indeed, the LAC, along with the two proposed consensus
algorithms (i.e. the Weighted Similarity Partitioning Algorithm
and the Weighted Bipartite Partitioning Algorithm) are related to
space transformations, which, in some ways, would link them to
the point of view proposed here. Although, for conciseness sake,
in this first presentation of a new perspective, we only discuss
ensembles of clustering algorithms working on original or affine
transformed pattern space.

However, we highlight that the concept of pattern space quan-
tization presented here naturally encompasses the three main ap-
proaches mentioned in (Gullo et al., 2009), namely instance-based
clustering ensembles, cluster-based clustering ensembles, and hy-
brid clustering ensembles. Indeed, most instance-based methods
operate on the co-occurrence or co-association matrix, which are
equivalent to Hamming distances between patterns projected in
label space, whereas cluster-based clustering ensembles directly
address projected pattern in label space.

In Section 2, we formalize some theoretical tools for clustering
ensemble analysis, whereas in Section 3, we analyse the ANMI cri-
terion and we compare it to its non-normalized version, whose
optimization is also discussed. In Section 4, the clustering ensem-
ble consensus is seen as a data space deformation, through a flex-
ible space quantization grid, whose effects on clustering tasks are
studied in Section 5, and whose consequences concerning ensem-
ble diversity is discussed in Section 6. Finally, in Section 7, we sum-
marize the proposed new perspective for clustering ensembles,
along with its useful consequences.

2. Clustering ensemble formalization

We assume that N objects or patterns, N ¢ N, are available.
Therefore, they form a nonempty set, denoted hereafter as
X = {X1,Xa2,...,Xn}. Moreover, each clustering attempt maps each
pattern from X into a label. Accordingly, a label put in the ith ob-
ject, by the jth clustering attempt, is denoted as y;;.

For convenience, we gather all labels, and therefore the entire
clustering ensemble, into a matrix Y = {y;;}, referred to as the label-
ing committee, where i(i=1,2,...,N) represents the number of ob-
jects/patterns to be clustered, and j(j=1,2,...,C) represents the
number of available clustering attempts.

2.1. The entropy associated to a vector of labels

In Section 3, we are going to analyze consensus clustering crite-
ria based on entropy. Thus, in order to properly define the entropy
of a clustering outcome, we first associate probabilities to vectors
of labels, as follows: let ¥ be the cth column of Y, whereas K©
is the number of distinct labels in ), If we randomly pick an ele-
ment from X, x,,, the probability of each element being picked is 1/
N, and its corresponding label, y(n), can be regarded as an in-
stance of a random source of symbols, Y, with K© possible out-
comes. Furthermore, the probability of label I being chosen is
P =n /N, where n stands for the number of labels I” in y©.
Thus, we can define the entropy associated to ' as:

K'©

HY®) = =" plog(p{")
k=1

Alternatively, by stretching our notation (for convenience), we use
both H(p©) or H®?) indistinctly, instead of H(Y()), where
po = [pﬁ”,pg), ... ,pi{%] is a vector of probabilities.

When we consider two columns of Y, ¥ and y'?, there is then a
pair of labels associated to each object x,, (I'9, ), This pair of la-
bels play the role of a single label, say I“?, whose probability of
being picked, if objects are randomly drawn, is p"” = n{“®/N,
where n{°® is the number of simultaneous occurrences of labels
19 and I through the N objects. Thus, we can also define the joint
entropy associated to two columns of Y as:

K(cd)
H(p(c,d)) _ Z p;f“”log (p}(f.d))
k=1

where K9 is the number of distinct pairs of labels found when col-
umns y'© and y'¥ are put together. It is worth noting that H(p“?) is
the joint entropy of two random sources of symbols, each one asso-
ciated to each vector of labels.

Therefore, the pairwise mutual information associated to col-
umns y© and y@ is:

1(p(6)7p(d)) =HpY) +H@p?) -

A useful property of entropy is its recursivity (or decomposability)
(MacKay, 2003), which we briefly present here as a lemma, since
it will play an important role throughout this work.

H(p“)

Lemma 2.1. Let y be a vector of labels given to N objects, where K
(K < N) is the number of distinct labels, 1, 1,,...,lg, and ny,ny, ..., ng
stand for the number of objects under each label. We further denote
D1, P2 - - ., Pk as being the probability of randomly picking one label. If
we subpartition the set of n, objects, labeled with 1, into Q subsets,
with s, qn, objects in each subset (where ZqQ:lsa,q = 1), then the new
vector of labels, y, has an entropy increased by p.H(sy), or, equiva-
lently, H(p) = H(p) + p,H(S.), where H(sq) = —ZqQ:]sa_qlog(sa.q) is
the entropy of the probability vector sq=[Sq1,- - -,Saql-

Proof. The entropy of the subpartitioned vector of labels, y, can be
split into two sums: one for the subpartition with Q new labels,
and another for the remaining K — 1 labels, as follows:

Hp)= - i %log(%) +i %lo‘g(%)
=1

k=1
k#p

Since N and n, do not depend on g, the subpartition related term can
be split into two ones:

Hp) = - ’i % log (%) + % i‘sa.q (log(saq) + log (%))
k= -
Lk #p

K Q
Hp) =) %log (%) + %log (%) + % q;sa‘qlog(sa‘q)

k=1
Lk #p

Finally, the entropy of p and that of the subpartition can be sepa-
rated, and the former is multiplied by the probability associated
to the label whose subset was subpartitioned:
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Q
H(B) = H(B) — 12 > 504l08(5aq) = H(D) + P H(s:) D
q

=1

Remark 1. Any nontrivial subpartition (i.e. 5,4 # 1, Vq) increases
the entropy associated to the original vector of labels by an amount
proportional to the cardinality of the subpartitioned set, n,. More-
over, this increment is maximized for equally sized subpartitions.

Remark 2. In the opposite direction, we readily realize that if two
or more subsets of objects, under two different labels are merged
under a single label, the resulting vector of labels, y, has its entropy
reduced by an amount which is proportional to the summed prob-
ability of the merged subsets, and this reduction is maximized
when merged labels have equal probabilities.

Fig. 1 illustrates both subpartition and fusion effects.

Example. Let y=[AAAABBA A C C C B]', whose entropy is
H(p) = &log(2) + 3 log(4) + 3 log(4) = 1.5 bits. If we split the set
of labels ‘A’ into two equally sized new sets, we have:
y1=[A1A1A1A2BBA2A2CCCBf

and the new entropy is
H(p1) = — log(4) + —log(4) + —-log(4) + — log(4) — 2 bits
P1) =15 108(%) + 15 108(%) + 15 108(%) + 15 108(%) =

By contrast, if we split that group into unbalanced subsets, say
y2=[A1 A2 A2A2BBA2A2CCCBf

the corresponding entropy is smaller:

. 1 5 3 3
H(ps) = ﬁlog(lZ) + ﬁlog(]2/5) + ﬁlog(4) + ﬁlog(4)
~ 1.82 bits

And we note that, as expected,
H(p:) = H(p) + (6/12)[(1/2)log(2) + (1/2)log(2)]

entropy increment

and
H(pz) = H(p) + (6/12)[(1/6)log(6) + (5/6)log(6/5)]

entropy increment

On the other hand, if we merge labels ‘B’ and ‘C, the new vector of
labels,y = [A A A A BC BC A A BC BC BC BC]', has a reduced entropy

y
peH(s5)

G

Bl Vectors of

labels
B2

Corresponding

artitions

ba

Fig. 1. Entropy increment/decrement due to cell subpartitioning/merging.

given by H(p) = & log(12/6) + S1og(12/6) =1 bit, or, according to
Remark 2:

H(p) = Hep) ~ 02

[log(6/3) + log(6/3)]

entropy decrement

Definition 1. Two label vectors, say y'© and y®, are said equivalent
if they correspond to the same partitions of X. An important con-
sequence is that H(p©) = H(p'?) = H(p'°?). Hereafter, we denote
equivalence between y© and y¥ as y{©) = y(@),

Definition 2. If H(p(©) = H(p“®) but H(p'©) > H(p'?), then the par-
tition provided by y'©) contains that of y'?©. This is compactly repre-
sented as y(© = subpart (y'?).

Example. Vectors YV =[AAAABBAA]'and y® =[BBB B BBl
are equivalent (i.e. y*=y®), whereas y*)=subpart (') and
y3) = subpart (y?), fory®=[1111223 3]"

Definition 3. Concatenation between vectors of labels is defined as
follows: given two vectors of N labels, y© and y'?, such as, for the
nth data/pattern in X, y@(n) = A and y'®)(n) = B (where A and B are
labels), then the concatenation operation is defined as ¢ = y*© @ y(?,
such as c(n)=AB is the new concatenated label of the nth object.
Fig. 2 illustrates that label vectors concatenation is equivalent to
the merging of data set partitions.

Furthermore, it is a straightforward matter to verify that, if
¥ = subpart (y?¥), then:

H(y @ subpart(y)) = H(subpart(y))

where subpart (y) stands for any subpartitioning of y. Finally, since
the labeling committee Y maps data patterns, from pattern spaces,
into vector of labels, its is useful to assume that:

Definition 4. Vectors of labels lie in a metric space (i.e. a set with a
metric), hereafter referred to as label space, whose metric is the
Hamming distance (Duda et al., 2001) between two vectors of
labels, which equals the number of positions for which the
corresponding labels are different.

|

Ry

N Available data points

Fig. 2. Concatenation of label vectors as a partition combination.
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3. Consensus criteria analysis

Each column of the labeling committee, Y, defines a partition of
X. Thus, consensus can be regarded as finding a single partition
which attains the maximum agreement amongst all partitions/col-
umns of Y. Clearly, this consensus is a vector of labels, itself, de-
noted as c.

In literature, one consensus criteria seems to be more promi-
nent now, the Averaged Normalized Mutual Information (ANMI)
(Strehl and Ghosh, 2002), which is sometimes directly used in con-
sensus optimization, such as in the Voting Active Clusters (VAC)
approach, proposed by Tumer and Agogino (2008), and in the gree-
dy optimization approach, the most straightforward algorithm
proposed in (Strehl and Ghosh, 2002). In this Section, we analyse
this criterion to better understand how it works. First, however,
for a proper approach into the matter, we start by defining a sim-
ilar but simpler criterion: the Averaged Mutual Information (AMI),
which differs from the ANMI only by neglecting normalization.

3.1. Averaged mutual information

This very simple criterion is given by:
C
M) =1/0>"I(cy 1)
k=1
where I(cy™®) = H(c) + HY®) — H(c & y™).
Thanks to its simplicity, we are able to state the following
theorem

Theorem 3.1. The maximum AMI is given by J&M —(1/C)
Sk H@W), and it is provided by a consensus, cAM!, resulting from
the concatenation of all columns of Y, i.e. cfM =y 0 y@ @ ... @ y©
or any subpartitioning of cAM!.

Proof. The mutual information between the consensus and the kth
column of Y is given by:

I(C[O\Ml,y(k)) _ H( AMI) +H(y (k) ) _ H(CSMI @y(k)) (2)

Since M =y 9 y@ @ --- @ y©, the concatenation of c;M' and any
column of Y produces a vector of labels equivalent to ¢ (see Def-
initions 1 and 3, in Section 2.1), and H(c}™' @ y®) = H(cj™'). There-
fore, Eq. (2) can be simplified to

I(CSMI,_V(’()) _ H(y(k))

Consequently, the AMI equals (1/C)>_¢ H(y®).

On the other hand, for any subpartitioning of cjM, say
¢; = subpart(c™M'), since it contains c¢jM!, (see Definition 2,
Section 2.1) which, in turn, contains y, for any 1 < k < C, then we
also have H(c; ® y*)=H(c,), and the AMI is again simplified,
through Egs. (2) and (1), to J*(c;, Y) = S35 Hy®).

Finally, for a consensus, ¢, nor equivalent to ¢4, neither to any
subpartitioning of it, it is clear that at least one concatenation
¥ @ ¢ must produce a vector equivalent to a subpartitioning of ¢
(otherwise ¢ would be equivalent to ¢4M!). Therefore, according to
Lemma 2.1, for at least one k, Hy® & ¢) > H(c), and, from Eq. (2),
we obtain I(y®,c) < H(y'¥). Consequently,

1 C
AMI ZI C y < c ZH(y(IO

k=1
and, given that L Y5_,H(y™®) is the value of J*M!, for ¢4 or any sub-
partitioning of it, we conclude that the AMI criterion is maximized
to L3¢ H(y™®) for any vector equivalent to cj™, or equivalent to
any subpartitioning of it. O

Probably, the first consequence of this theorem is that the num-
ber of distinct labels in ¢A™' is not flexible, and should not be used
as a reasonable estimate to the number of clusters. For instance, in
Fig. 2, where we clearly see three clusters, the concatenation of
only two vector of labels, which is equivalent to the merging of
two partitions of dataset A, as illustrated in the same Figure, pro-
duces a consensus with 5 cells. Evidently, even if such a consensus
is optimum in terms of AMI, it is almost useless for cluster analysis
purposes, because it may divide actual clusters into separated cells.

Indeed, in cluster analysis, either we know beforehand the
number of clusters, or we look for an estimate of it, usually through
criteria that somehow compare intra-cluster compactness and be-
tween-cluster sparseness. However, if we limit our clustering ap-
proach to that where we only have access to vectors of labels
(and no access to original data), then we must compensate for it
through two strategies, namely:

(I) By indirectly measuring distances between patterns through
their labels.

(II) By penalizing consensus with an elevated number of labels,
thus inducing the concatenation of cells in the partition cor-
responding to cAM!.

3.2. A parsimoniousness role for normalization of mutual information

In this subsection, we explain how the normalization of mutual
information can be regarded as a strategy of type II. Then we dis-
cuss how strategies of type I may explain the good performances
of clustering ensembles.

The Averaged Normalized Mutual Information (ANMI), as de-
fined in (Strehl and Ghosh, 2002), is given by:

C

]ANMI c; Y Z H(y = )

or

) :% EC: H(c) + Hy™) — H(c & y™®) 3
k=1

H{OH(Y™)

Since ¢ @ ¥ either is equivalent, or contains ¢ (see Definitions 1
and 2), then, according to Theorem 3.1, for any consensus c,
H(c @ y™®) > H(c), where equality holds only when ¢ = ¢4 or c is
a subpartitioning of ¢jM. It is useful to define a positive entropy
increment A%®, such as:

Hcaoy®)=Hc)+ 4%, 4% >0

where A% =0, vk only for ¢ = ¢4™. Thus, we can rewrite Eq. (3) as:
1.E )

JANMI ey — 2 4)
-t % VR

By applying logarithm on both sides of Eq. (4), we can re-arrange
log(J*"M!(c;Y)) as the sum of two terms:

=f(e;Y) + 4g(c) ()

¢, ”%) and g(c) = — log (C/H(c)).
This formulation puts into evidence an underlying Lagrangian function
(Duda et al., 2001). That is to say that, while the first term flc;Y) is
maximized for A% =0, vk, the second term penalizes consensus with
too much labels, because it is not parameterized by Y, and depends on
H(c). Therefore, the first term is equivalent to the non-normalized crite-
rion AMI and leads to the very same consensus cj™!, if optimized alone.
By contrast, the second term goes in the opposite direction, and clearly

log(/*™(c;Y))

where 1=1,f(c;Y) = log (
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induces a consensus, ¢4NM!, corresponding to a partition with less cells
than that corresponding to cj™.

A question may raise from this proposed point of view: is the
Lagrange multiplier, 4 = 1, the best choice for any data set? Unfortu-
nately, this seems to be a too complex question to be properly ad-
dressed here, and we will postpone it to future works. For a while,
we just claim that:

(a) Consensus ¢ANM!' usually produces better clusterings than
¢! because normalization plays a parsimonious role which
reduces the number or partition cells.

(b) Consensus cA"M! js not necessarily optimized when the num-
ber of partition cells coincides with the number of actual
data clusters. A straightforward example is that one where
the number of clusters, by chance, equals the number of par-
tition cells produced by ¢4™' (therefore greater than that by
CQNMI)‘

(c) A lesson we learn from the usefulness of the /""M! shown
through practical examples in literature, in spite of its non-
optimized Lagrangian formulation, is that better consensus
are probably reached by concatenation of cells in partitions
given by cjM!.

(d) The ANMI criterion is not enough to guide concatenation of
partition cells. Indeed, for this purpose, it is necessary to
measure distances between data points or, alternatively,
between partition cells.

(e) A primary motivation for developing cluster ensembles
(Strehl and Ghosh, 2002) is related to data privacy, since it
provides new data analysis/segmentations without going
back to the original features. In order to keep this motivation
on, in this work, we must avoid the use of distances between
data points in their original spaces.

Claims (c) and (d) pave the way for most known algorithms. For
instance, in (Strehl and Ghosh, 2002), three algorithms are
proposed, besides the greedy optimization of /™! namely: the
Cluster-based Similarity Partitioning Algorithm (CSPA), the Hyper-
Graph Partitioning Algorithm (HGPA), and the Meta-CLustering
Algorithm (MCLA). They all indirectly address distances between
data points by counting the number of times subsets of points ap-
pear in the same cluster. In the Graph Theoretic background used
by the authors, coincidence pointers are referred to as hyper-
graphs, whereas data points are associated to vertices. Similar indi-
rect distance measures between data points, though in a simpler
(not graph based) formulation reappear, for instance, in (Fred
and Jain, 2005; Yu et al., 2008; Hong et al., 2009).

In (Topchy et al., 2005; Nguyen and Carauna, 2007) we find a
second kind of approach, which defines and uses distances be-
tween cells in the final data partition given by cjM'. Typically, the
Hamming distance is used, even though, in (Topchy et al., 2005),
likelihood is used instead. It is worth noting that they use the par-
tition corresponding to ¢! as a starting point for cell recombina-
tion, though they do not define the AMI criterion.

4. Clustering ensemble as a (Re)quantization approach

In order to link partition cells and clusters, we highlight that
close patterns in the pattern space are likely to be mapped into
the same cluster by most clustering committee members.
Similarly, closer patterns are likely mapped into closer cells in
most data partition consensuses. Thus, the Hamming distance
between partition cells, in the label space, indirectly measures
distances between patterns inside these cells.

Consequently, regardless which kind of clustering committee is
used, clustering ensemble approaches can be regarded as a

)

Data

Data space

Label space
(discrete)

Fig. 3. Clustering Consensus as a network of clustering algorithms - first, in data
space, and secondly, in label (discrete) space.

two-layered strategy, where the consensus finder in the second
layer is, itself, a clustering algorithm running in the label space.
Fig. 3 illustrates this point of view.

Virtually any conventional clustering approach can be adapted
to play the role of a consensus searcher, which is, essentially, a
clustering algorithm in the label space. For instance, in (Nguyen
and Carauna, 2007), a straightforward adaptation of the K-means
algorithm was used for finding consensus, under the denomination
Iterative Voting Consensus (IVC). Interestingly, in the experimental
results presented in (Nguyen and Carauna, 2007), this very simple
approach outperformed those proposed in (Strehl and Ghosh,
2002), which are sensibly more elaborated. Many other examples
come from more straightforward approaches to finding consensus,
where pairwise distances between vectors of labels are arranged
into distance matrices, and agglomerative clustering algorithms
provide dendrograms through which clusters are analysed. Not
surprisingly, the typical drawbacks of agglomerative algorithms
are re-found in the label space based adaptations (e.g. the compu-
tational and storage complexity of the CSPA approach (Strehl and
Ghosh, 2002)).

From this two-layer clustering perspective, one important ques-
tion arises: why is it better than conventional clustering in data
space? Beyond the obvious averaging effect obtained from the
re-doing of non-robust cluster analysis many times, there is evi-
dence of other less obvious effects, since the averaging effect alone
does not explain, for instance, how combinations of weak cluster-
ings solve difficult problems (Fern and Brodley, 2003; Topchy et al.,
2005).

An interesting answer may came from a work published in
1993, by Postaire et al. (1993) (also detailed in Theodoridis and
Koutroumbas, 2003), the “Binary Morphology Clustering Algo-
rithm” (BMCA). In the BMCA, data space is first quantized through
a regular grid, thus producing a data set partition. Then, morpho-
logical operations discard partition cells with too low data densi-
ties, whereas high-density cells are fused. In Fig. 4, the Half-rings
data set used in (Postaire et al., 1993) is depicted, along with a reg-
ular grid, to illustrate the approach. As we can observe, discarding
low-density cells is similar to a pruning of possible outliers,
whereas the fusion of high-density ones may create clusters with
virtually any shape (non-spherical clusters, for instance).

Alternatively, we can regard the regular grid in Fig. 4 as a spe-
cific case of weak partition combination, where each line is a com-
mittee member, similarly to the random hyperplans used in
(Topchy et al., 2005). Thus, grid cells may be labeled and regarded
as points in a label space, where distances between cells are mea-
sured by the minimum number of boundaries between them
(Hamming distance). Now, for instance, if we discard sparse cells
which, together, contains 30% of N (N = 1000 points, in this case),
and if we proceed any cluster analyzes in this new metric space,
we can easily infer the existence of two clusters.
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Regular grid

|:| Cells with density under threshold

Fig. 4. Regular grid - all cells have the same area.

Half-rings data set dendrogram analysis

45 3
2.8

4 26
35 24
2.2
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2 1.4
Al
;

In data space In label space

Fig. 5. Single-link dendrograms from the Half-rings data set in data space (left) and
in label space (right).

Fig. 5 shows both single-link dendrogram from the Half-rings
data set, in the original data space, and in the label space after
pruning of sparse cells. As expected, in the label space, the two
non-spherical clusters are clearly noticed, whereas, in the original
data space, they are not.

To further illustrate the analogy between BMCA and clustering
ensembles, we replace the regular grid in Fig. 4 with an irregular
one, corresponding to an ensemble of 80 random lines (2-D version
of random hyperplans studied in Topchy et al., 2005). Fig. 6 shows
one instance of this random clustering ensemble, where each (poor)
clustering hypothesis randomly splits data in only 2 clusters.

Therefore, each pattern from original 2-D space is mapped to a
vector of 80 labels. If we further assume that the labels used in
each clustering are ‘1’ and ‘2’, then this association corresponds
to a mapping from R? to {1,2)%°. In this new 80-D label space,
we may use any conventional clustering approach (for instance,
by replacing Euclidean distance with Hamming distance in the
K-Means algorithm) as a consensus finder. Nonetheless, we arbi-
trarily choose 3 consensus methods proposed in literature specifi-
cally for this task,? and then we just count the number of pattern
misassignments (misclassifications).

Clearly, patterns mapped into the same set of labels lie inside
the same cell of the quantization grid. Therefore, we may discard
low-density cells, just as we did in the regular-grid based

2 We dropped the HGPA method because it produced useless results in this
experiment: almost 50% of misclassifications.

Irregular grid

Fig. 6. Irregular grid - cells have randomly distributed areas.

illustration. Thus, we discard cells which, together, contains 30%
of N, and we proceed cluster analyzes again.

The average percentages of pattern misclassifications, with and
without cell pruning, are presented in Table 1, averaged over 10
independent initializations of the random clustering ensemble
and consensus methods.

The proportion of misclassifications, through all tested consen-
sus methods is clearly reduced after pruning of cells. In other
words, the same advantages of the BMCA concerning pruning are
noticed here. Indeed, the replacement of regular grids with random
grids may be regarded as a generalization of the space quantization
proposed in (Postaire et al., 1993), with the advantage of an easier
adaptation to high-dimensional pattern spaces.

This link between the Binary Morphology applied to Clustering
and clustering ensemble is not explicitly exploited in clustering
ensemble literature - to the extent of authors knowledge -, though
it can be a useful development tool. For instance, any consensus
method directly or indirectly analyzes vectors of concatenated la-
bels (see Definition 3 in Section 2.1). Therefore, whenever a con-
sensus method discards one specific concatenation of labels
because it rarely appears during analysis, this action is analogous
to a cell pruning, in the sense of BMCA, as far as each cell corre-
sponds to a specific concatenation of labels.

One should agree that discarding rare concatenations of labels
is a rather straightforward idea, by itself. Although it may be diffi-
cult to identify this step inside each specific consensus method, we
may infer that most of them includes it, even in some indirect
manner, and we claim that it may partially explain the superiority
of clustering consensus algorithms, as compared to conventional
clustering approaches.

But there is an even more important aspect of space quantiza-
tion with clustering ensembles that must be taken into account as
well: the quantization proposed in (Postaire et al., 1993) is made
trough a regular grid, whereas the “grid” obtained from the merging
of individual clustering partitions tends to be irregular. Indeed, cells

Table 1
Comparison pattern misclassifications with and without cell pruning.

Method No pruning (%) Pruning (%)
\Ye 11.7 6.4
CSPA 83 34
MPLA 10.0 6.8
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area/volume/hypervolume strongly depends on how the clustering
committee is formed. For instance, we expect a committee of ran-
dom lines/plans/hyperplans to provide cells with balanced area/
volume/hypervolume through the whole pattern space. By contrast,
committees of conventional clustering algorithms are expected to
form a grid of unbalanced cells, for they are expected to put bound-
aries more likely around/between-clusters then across clusters.

In order to provide an easily understandable illustration of this
idea, we adapted the MLP-CLUST algorithm (Montalvdo et al.,
2007) to move the random lines shown in Fig. 6, gradually pushing
them toward regions of the space less dense in terms of patterns.
This adaptation of the MLP-CLUST is a very simple kind of valley-
seeking algorithm (Theodoridis and Koutroumbas, 2003), in which
each line is associated to an artificial neuron, which is indepen-
dently adapted through a Hebbian-like (self-organized) learning
rule. Fig. 7 illustrates how lines tend toward the S-shaped valley
between the two clusters. Consequently, cells inside the valley,
after adaptation, tend to be smaller than outside it.

It is worth remembering that, in label space, the Hamming dis-
tance between the projection of patterns from two different cells is
given by the minimum number of cell boundaries one must cross
to go from one cell to the other. In other words, the averaged sep-
aration between-clusters, in Hamming distance, is clearly in-
creased after adaptation (Fig. 7, right), since more lines are found
inside the S-shaped valley between the two clusters. Through an
analogous reasoning, we also realize that the averaged Hamming
distance between pattern inside each cluster is reduced.

Increasing between-cluster separation and decreasing within-
cluster dispersion is easily recognizable as a way to facilitate the
clustering task, regardless the clustering algorithm we use. There-
fore, an interesting question to be studied is whether any cluster-
ing ensemble has this suitable effect on the label space.

In the next Section, we address this question through experiments.

5. On the effect of irregular space quantization

In this Section, we experimentally study how clustering ensem-
bles take advantage of irregular data space quantization. Five data
sets were used in our experiments, two of them are synthetic and
three are publicly available at the UCI repository of machine learn-
ing databases (Blake, 1998), namely:

e 4-Gaussians: A data set corresponding to toy clustering prob-
lem, with 4 well separated radial (standard variation = 0.1) clus-
ters in 2-dimensional space, centered at (—1,1), (-1,-1),(1,-1)
and (1,1), respectively. This set contains 200 real-valued vectors
(50 per cluster).

e Rings: Half-rings data set used in (Postaire et al., 1993), with
1000 real-valued vectors corresponding to 2-dimensional pat-
terns, from 2 classes, as illustrated in Fig. 4.
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e Wines: Italian Wines data set, with 178 real-valued vectors cor-
responding to 13-dimensional patterns, from 3 classes.

e Iris: Iris data set, with 150 real-valued vectors corresponding to
4-dimensional patterns, also from 3 classes.

o WDBC: Wisconsin Diagnostic Breast Cancer data set, with 569
real-valued vectors corresponding to 30-dimensional patterns,
from 2 classes.

To measure how pattern space quantization affects clusters dis-
persion in label space, we further define some criterion functions
for within-class and between-class dispersions analysis, namely:

o JE: Averaged Euclidean distance between patterns from the
same classes.

o JE: Averaged Euclidean distance between patterns from differ-
ent classes.

o JH: Averaged Hamming distance between label vectors from the
same classes.

o J#: Averaged Hamming distance between label vectors from dif-
ferent classes.

We highlight that these criterion functions use the a priori
knowledge of the classes from which patterns come from. Please
note that, for real-world clustering problems, we usually do not
know beforehand whether classes of patterns do correspond to
well separated clusters.

As stated before, in label space, the distance between two par-
tition cells corresponds to the minimum number of cell boundaries
one should cross to go from one to another cell. Therefore, the vol-
ume of each cell is not explicitly taken into account in distance
measures. In other words, it does not matter whether two cells
are separated by a big cell or by a very thin one, they are the same
Hamming distance apart.

If a conventional clustering algorithm, such as the K-Means, is
used with data sets featuring Nc well separated clusters, and if
we further know beforehand the actual number of clusters to be
found, then we naturally expect this algorithm to more likely place
boundaries between-clusters than across them. If we gather an
ensemble of C clusterings under such a favorable setup, then the
averaged between-cluster Hamming distance must be close to C.
Ideally, we must find C boundaries between each pair of clusters,
one boundary from each clustering algorithm, in case they all cor-
rectly find all clusters. Although this idealized case makes the clus-
tering ensemble obsolete, and it almost corresponds to what we
obtain through the 4-Gaussians data set, we hope that this very
simple set will help us to better explain why the J#//* ratio in-
creases in label spaces.

Thus, if we use an ensemble of 100 K-means with the 4-Gaussi-
ans data set, a ratio of J# = 94 is obtained (close to C= 100, as ex-
pected), whereas ]V’"V = 5. Note that if all 100 committee members
had correctly found four clusters, these values would be 100 and

Adapted committee

Fig. 7. Adaptation of 80 random partitions with a simple valley-seeking algorithm - The MLP-CLUST algorithm (Montalvdo et al., 2007).
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0, respectively. In other words, though most boundaries are lying
between clusters, some few boundaries are lying across clusters.

5.1. Increasing J5 /] - Synthetic data

If we compare the original 2-D pattern space to the 100-D label
space, through their respective between-cluster separation and
within-cluster dispersion, we obtain:

o In original pattern space: J£/Jf, = 6.7 (Euclidean distances).
o In label space: Ji /! — 18.8 (Hamming distance).

Though distances are differently calculated in pattern and label
spaces, this sounding difference between ratios clearly indicates
that, in label space, the 4 clusters are even more compact and well
separated then in pattern space.

K-means with Euclidean distance is probably the most popular
clustering algorithm based on prototypes, and the 4-Gaussians
data set fits pretty well the basic assumptions behind this algo-
rithm: that clusters are well separated and radially dispersed. In
order to test if this gain of J //* with respect to J£/J% is conditioned
to the use of K-Means ensembles, we repeated the experiment with
a committee of clustering algorithms from a very different para-
digm: we replaced K-means with the Fukunaga’s algorithm
(Fukunaga, 1990).

The Fukunaga'’s algorithm, unlike the K-Means, doesn’t use pro-
totypes to partition data. Instead, it places cluster boundaries in
pattern space regions with low data density — the “valleys” of
underlying Probability Density Functions from which patterns are
drawn. Moreover, every pattern may directly influence boundary
contour, usually providing much more irregular boundaries than
K-Means. Though the number of clusters, K, to be found must be
given beforehand, as in K-Means, another important particularity
of the Fukunaga'’s algorithm is that it may find a number of clusters
smaller than K.

From the experiment with an ensemble of 100 Fukunaga’s algo-
rithms, we obtained, in label space: Ji! = 89, less than 100, thus
indicating that some committee members failed in finding the 4
clusters. And J¥ = 0, indicating that no boundary is lying across
cluster. In other words, J# /[ diverges to infinity, because every
cluster felt into a specific cell. Since, in the label space, each cluster
contracted to a single point, this is the most suitable effect to facil-
itate cluster analysis. This is even a better result as compared to
that obtained with K-Means committee.

Another evidence of this helpful effect, with a data set not so
easy to be clustered is that one shown in Fig. 7. There, a committee
of random partition was adapted through another valley-seeking
algorithm, the MLP-CLUST. In this case, with the random commit-
tee, we have JI' /] — 2.4, whereas this ratio is slightly increased to
2.8, after adaptation.

5.2. Increasing J5 /] - Real-world data

Table 2 shows JE/JE, values for real-world data sets, in original
pattern space, and the corresponding averaged JY// in label
spaces, with 100 members per clustering committee.

Table 2
Comparison between J,/J, ratios in original and projected spaces.

Data To/l JH /1 (K-means) JH /1% (Fukunaga’s)
Wines 1.78 3.78 2.79
WDBC 1.04 1.78 1.46
Iris 2.37 2.29 2.35

Merging partitions = Irregular grid

Fig. 8. From 2 to 6 individuals K-means partitions and their partition merging.

Except for the Iris data set, Ji' /[ is greater than JE/Jf, with both
kinds of clustering ensembles. This result indicates that the 3 clas-
ses in Iris data set do not form well defined clusters, neither for
K-Means, nor for Fukunaga’s algorithm. In other words, both algo-
rithms were unable to find stable cluster configurations, and we
may conclude that the J5/J gain with respect to JE/JE is data
dependent.

5.3. Committees of valley-seeking algorithms

Both MLP-CLUST and Fukunaga’s algorithm are examples of
valley-seeking algorithms (Fukunaga, 1990; Theodoridis and
Koutroumbas, 2003), which, along with boundary-detection algo-
rithms (Atiya, 1990), tend to produce data space partitions with
boundaries falling in low-density parts of the space, whereas algo-
rithms such as the K-means, which aim at finding prototypes in
dense regions, may place cells boundaries between those proto-
types, even if it corresponds to high-density parts of the space.

Therefore, consensuses of a K-means based committees tend to
produce grids which potentially split actual clusters in too many
parts. Fig. 8 illustrates this effect by combining 5 partitions
provided by 5 K-means runs, with 2-6 prototypes, respectively.

By contrast, as illustrated in Fig. 9, the combination of valley-
seeking algorithms should, in average, put more boundaries inside
the between-clusters regions (valleys), thus increasing the be-
tween-clusters distance in the label space, mainly when the im-
posed K is not too high.>

This hypothesized advantage of combination of valley-seeking
algorithms is also suggested by the point of view from which clus-
tering ensembles non-linearly quantizes pattern space. In order to
gather evidences of it, new test results are presented in terms of
cluster assignments in disagreement with the known class labels.
This measure, frequently used in literature, assumes that classes
do form separated clusters in data space. The number of bad clus-
ter assignments is referred to as the number of misclassifications.

Each result presented in Tables 3-6 was averaged over 5 inde-
pendently obtained values, corresponding to 5 independent com-
mittees of 50 clustering members each one. As for the IVC
consensus algorithm, since it may provide rather unstable results,
the number of misclassifications presented in all tables correspond
to an averaging of 50 IVC results, for each committee. In all exper-
iments, the number of clusters, K, assigned to each committee
member is randomly drawn from {2,3,...,10}.

3 Please note that we no longer impose the same K (number of clusters) to
committee members, as in experiments in the former Subsection.
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Fig. 9. From 2 to 6 individuals Fukunaga’s partitions and their partition merging.

Table 3
Comparison between committee types — Rings database.
Method K-means Fukunaga
MCLA 38 33
CSPA 76 45
IvC 76 57

Note: With this data set, the HGPA provided almost 50% of misclassifications with

both K-means and Fukunaga’s committees.

Table 4
Comparison between committee types - Iris database.
Method K-means Fukunaga
MCLA 3.0 4.5
HGPA 7.2 4.0
CSPA 8.2 4.4
IvC 44.2 253
Table 5
Comparison between committee types — WDBC database.
Method K-means Fukunaga
MCLA 453 65.0
HGPA 201.5 78.1
CSPA 122.0 100.2
IvVC 76.9 52.1
Table 6
Comparison between committee types — Wines database.
Method K-means Fukunaga
MCLA 10.6 11.6
HGPA 5.6 11.5
CSPA 12.3 13.1
IvVC 25.5 223

From these tables, we see that, except for the Wines data set,
the valley-seeking committee seems to induce improved consen-
sus, except for the MCLA.

Interestingly, it is worth noting that projecting patterns in a la-
bel space, through clustering ensembles, in some cases, may even
increase the number of misclassifications, in average! For instance,
by independently applying the K-Means 500 times with the Wines

data set, we obtain an averaged number of misclassifications of 9.2.
By comparing this result to those displayed in Table 6, we may con-
clude that, for this data set, except for the HGPA with K-Means
ensemble, the tested clustering ensemble strategies should be
avoided if one’s goal is to minimize misclassifications.

On the other hand, as formerly shown in Table 2, pattern
space quantization through clustering ensemble do increase the
JH/T% ratio, with respect to JE/JE. In fact, to better understand
how these apparently contradictory results are related, we
believe that a deep study on the relationship between misclassi-
fications and cluster shapes is necessary, but it is beyond the
scope of this work.

For a while, we keep claiming that valley-seeking committee
may induce improved consensus. Though this claim is rather
weakly supported by our experimental results, we highlight the
analytical reasoning behind it, based on the nonlinear space quan-
tization interpretation proposed in this paper. It is worth noting
that the averaged superiority of valley-seeking committee was
hypothesized before any experiment was done.

6. On the diversity of clustering ensembles

The placement of boundaries in pattern space also concerns an-
other important concept in clustering ensemble: diversity. Formal
definitions of ensemble diversity is frequently given through en-
tropy related measures (e.g. based on Normalized Mutual Informa-
tion), but other formal definitions may be given too, such as in
(Gullo et al., 2009), where another assessment criterion used in
Information Retrieval and Machine Learning, the F-Measure, was
used to assign weights to clustering solutions in a given ensemble.

Beyond any formal definition, the concept of diversity of a clus-
tering ensemble may be easily understood as a measure of dis-
agreement amidst proposed partitions, or equivalently, how the
various clustering solutions are dissimilar to each other. Therefore,
from the space quantization point of view, higher diversity pro-
duces finer quantization grids. On the other hand, low diversity
means many grid boundaries lying between the same subsets of
patterns, forming void grid cells.

In Fig. 7, we can see that random partitions (left) produce high
diversity whereas, after adaptation (right), boundaries (straight
lines, in this case) converge to between-clusters spaces, thus
reducing diversity.

Ensembles must have some level of diversity to properly work,
but how much diversity is necessary? It is an important question,
and we believe that the point of view proposed in this work may be
useful again. For instance, let us consider the very simple ensem-
bles presented in Fig. 7. It is clear that the high diversity random
ensemble on the left is less useful, for clustering purposes, than
the adapted ensemble on the right. Indeed, as discussed in Sec-
tion 5, clustering in label space is easier than it is in original space,
thanks to its increased Jf /J% ratio, with respect to JE/JE.

On the other hand, if we just keep the random ensemble (higher
diversity) unchanged, forming a very fine and regular quantization
grid, and we measure distances between projected patters in label
space, then Hamming distances in label space tend to be just dis-
cretized versions of original Euclidean distances, in pattern space,
due to the fine and regular discretization grid. In other words, such
an ensemble with very high diversity does not facilitate clustering
task in label space.

To illustrate this reasoning with an experiment, we first run the
K-Means algorithm 100 times (independent initializations) and we
count the averaged number of misclassifications. Afterwards, we
do the same, with the K-Means running in label spaces spanned
by a ensembles of 80 random partitions (as in Fig. 6). The averaged
results, in terms of misclassifications are:
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e in pattern space: 127.5 misclassifications,
e in label space: 124.7 misclassifications.

As expected, results are similar. Thus, seeing clustering ensem-
bles as a pattern space quantizer help us to understand that ideal
diversity should not be too high, otherwise there is no gain in using
clustering ensembles, with respect to conventional clustering
approaches.

7. Conclusion

In this paper, a new perspective for clustering ensembles was
presented. This new perspective is manyfold, and can be summa-
rized as follows:

o The merging of all partitions from a clustering committee max-
imizes the (non-normalized) Averaged Mutual Information
between a consensus partition and that committee.

This consensus does not maximize the normalized criterion, the
ANMI, which can be reformulated as a Lagrangian function,
with a penalization term for consensus partitions with too
many cells.

Unfortunately, the ANMI maximization is not a guaranty of
good clusterings. Its apparent success as a blind substitute for
the misclassification ratio is probably limited to problems with
a few actual number of clusters, since the ANMI penalizes con-
sensus with an elevated number of partitions (estimated
clusters).

The combination of all partitions from a clustering committee
seems to be a good starting point for finding consensus
partitions.

From this starting point, which maximizes the AMI, cells can be
pruned and fused, thus allowing for a necessary decreasing of
the AMI (after its maximization).

To fuse partition cells, we must consider distances, either in
data, or in label space.

Consequently, Clustering Consensus can thus be regarded as a
two-layered clustering task: first, in pattern space, and sec-
ondly, in label space (discretized space).

If we consider distances in label space, Clustering Consensus
becomes very close to the Binary Morphology Clustering Algo-
rithm, proposed in 1993.

From this similarity, we can learn that Clustering Consensus
may take advantage of the pruning of sparse partition cells.
Unlike the Binary Morphology Clustering Algorithm, Clustering
Consensus may also take advantage of the nonlinearity of the
grid quantization provided by the clustering committee. A
well-tuned committee can, for instance, contract clusters and
expand between-cluster spaces, through nonlinear mappings
from pattern spaces into label spaces.

We hope that this proposed point of view can be used to im-
prove Cluster Consensus design. For instance, we found some evi-
dence that Committees of valley-seeking clustering algorithms
may improve consensus performance, which corroborates our be-
lief that nonlinear space distortions which contract clusters are
provided by this kind of committee.

Moreover, through this new regard, we can also clearly see how
diversity amongst committee members is necessary for boundaries
in the space discretization grid not to collapse (thus avoiding par-
tition cells with null area/volume/hypervolume). Similarly, we can
also see that finding consensus is a matter of discarding sparse par-
tition cells and fusing those which are closer in label space. It ex-
plains why even committees of completely random partitions
may lead to useful consensus: because they tend to provide a uni-
form discretization grid. Moreover, we also infer that, in this case,
only cell pruning can be used to improve consensus performance,
since the uniform grid discards the possibility of taking advantage
of a well-tuned nonlinear mapping between pattern-space and la-
bel-space.

In the sequel of this work, we are going to study how to design
improved pattern spaces mappings into label spaces through the
choices of committee members.
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