
Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 1

Journal of Intelligent & Fuzzy Systems 18 (2007) 1–11 1
IOS Press

Clustering with multilayer perceptrons and
self-organized (Hebbian) learning

Jugurta R. Montalvão Filho∗, Eduardo O. Freire and Murilo A. Bezerra Jr.
Universidade Federal de Sergipe (UFS), São Cristóvão, CEP. 49100-000, Brazil

Abstract. A new local (Hebbian) learning algorithm for artificial neurons is presented. It is shown that, in spite of its implemen-
tation simplicity, this new algorithm, applied to neurons with sigmoidal activation function, performs data clustering by finding
valleys of the probability density function (PDF) of the multivariate random variables that model incoming data. Some interesting
features of this new algorithm are illustrated by some experiments based on both artificial data and real world data.

Keywords: Hierarchical clustering, Hebbian learning, deterministic annealing, PDF valleys

1. Introduction

Clustering is a self organized process that plays
an important role in a wide range of fields, ranging
from typical applications, as Pattern Recognition and
Signal Compression [3], and Knowledge Discovery
in Databases (KDD) [7], to less common ones such
as communication channel estimation and/or equaliza-
tion [2,8].

In cluster analysis concerned literature, we easily
identify two main issues: (a) clustering data into a pre-
viously given number of clusters – most popular algo-
rithms for clustering are based on both empirical ge-
ometric criterion (e.g., K-mean and vector quantiza-
tion (VQ)) and probabilistic models, (e.g., Expectation-
Maximization (EM)) –, and (b) estimating the number
of clusters – though there are no completely satisfactory
methods for this task [6], among the most performing
algorithms, we can find the Duda and Hart‘s test statis-
tic Je(2)/Je(1) [3], and the Cubic Clustering Criterion
(CCC) [10].

Most popular strategies in both issues are based on
clustering multidimensional samples (data) around pro-
totypes, cluster centers, where the association of a sam-
ple to its cluster is based on predefined (e.g. Euclidean)
distance measure from the cluster center. Accordingly,

∗Corresponding author. E-mail: jmontalvao@ufs.br.

for estimation of the number of clusters, one rule of
thumb is to increase it and to choose a configuration for
which the averaged within cluster dispersion decreases
more abruptly.

Roughly speaking, classical clustering approaches
present some well-known drawbacks, such as sensi-
bility to prototypes initialization and inadequacy when
cluster shapes are far from ellipsoidal one, while find-
ing the number of clusters remains a challenging open
problem.

It is worth noting that,on the other hand,Multi-Layer
Perceptron (MLP) with sigmoidal activation functions
became popular thanks to its capabilities to circumvent
similar problems in classification context. That is to
say that MLP can be quite robust to parameters initial-
ization as well as, in classification tasks, they are suit-
able to deal with highly non-ellipsoidal class disper-
sions. However, in spite of its helpful characteristics,
MLPs with sigmoidal activation functions are most of
the time applied to classification and multi-dimensional
regression tasks, and not to clustering tasks.

In this paper, we present a new clustering algo-
rithm, based on MLP with sigmoidal activation func-
tion, where self-organized neurons are adapted by a
local (Hebbian) rule, derived from a probabilistic ap-
proach. Thus, each neuron uses the Kullback-Leibler
divergence, together with a stochastic gradient opti-
mization strategy, to fit low density intervals in the
Probability Density Function (pdf) that models the Ran-

1064-1246/07/$17.00  2007 – IOS Press and the authors. All rights reserved

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 2

2 J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning

dom Variable (RV) source from which data is drawn.
Hereafter, it will be referred to as pdf valleys.

Note that, unlike most clustering approaches, the
proposed algorithm does not use prototypes around
which data is gathered – points of maximum data den-
sity –, but it rather looks for regions of low data density,
which are, by hypothesis, between-clusters boundary
candidates. As a consequence, the new algorithm, here-
after referred to as the MLP-CLUST, provides some
interesting properties, including the possibility of es-
timating the number of clusters and also providing a
hierarchical interpretation of the estimated clusters.

In order to present this new algorithm, this paper is
organized as follows: Section 2 presents the neural net-
work structure of the proposed algorithm and the cost
function applied to the adaptation of each neuron. In
Section 3, a learning strategy is proposed. In Section 4,
it is explained how to initialize all parameters, while
in Section 5, the clustering algorithm itself is briefly
presented. Section 6 presents a useful feature of the
algorithm: its automatic cluster labeling capability. Fi-
nally, In Section 7, computational results are presented.
Conclusions and final discussions are provided in Sec-
tion 8.

2. The MLP-CLUST cost function

The proposed algorithm is based on a classical Neu-
ral Network (NN) model: the MLP [4]. Nevertheless,
to better explain how it works, we first present the clus-
tering capabilities of a Single Layer Perceptron (SLP).
Indeed, Section 7 presents an illustration of how such
capabilities can be extended to an MLP.

A SLP performs a nonlinear mapping of �Ni on the
hypercube] − 1, +1[No, given by:

y = tanh(g(Wx + b))

where x = [x1 x2 . . . xNi]t is an Ni-dimensional real
valued column vector, representing an input sample,
y = [y1 y2 . . . yNo]

t is an No-dimensional column
vector, g represents the neuron soma gain, always pos-
itive, tanh(·) stands for hyperbolic tangent function,
W is the synaptic weight matrix, and b is the neuron
bias (or threshold) vector, both real-valued.

In order to present the cost function, since it provides
a Hebbian learning rule (i.e. a local rule), we may focus
on a single neuron, whose output is:

yi(x) = tanh(g(wix + bi))

where wi = [wi,1 wi,2 . . . wi,N], is the i-th row of
W, corresponding to the synaptic weights of the i-th
neuron into the layer, and bi corresponds to its bias.

Assuming that Yi is a random variable, according to
some theoretical reasons presented in the following, we
might take, as a suitable cost function, the following
expectation:

Ji = −EYi{log(y2
i + 1)} (1)

where the addition to one avoids singularity.
Moreover, defining h(x) = (y2

i (x) + 1) and rewrit-
ing the cost function as follows:

Ji = −
∫ +∞

−∞
fX(x) log(h(x))dx (2)

where fX(x) is the multivariate pdf of the random vari-
able X, we obtain an expression closely related to the
Kullback-Leiber (K-L) divergence [4], a well-known
tool to compare probability density functions1.

Note that, although
∫ +∞
−∞ h(x)dx �= 1, the function

h(·) is strictly positive for all x ∈ �Ni , which allows
the comparison between this function and the pdf of X,
as follows:

DfX(x)‖h(x) = −H(X) −
∫ +∞

−∞ (3)
fX(x) log(h(x))dx

Since H(X) corresponds to the entropy of X (i.e. the
NN input), in order to reduce the K-L distance between
fX(x) and h(x), we can only adapt the function h(·),
which corresponds to minimize the cost function in
Eq. (1). Moreover, since 1 � h(x) < 2, it is easy to
show that the integral Ji converges to a real number
greater or equal to 0 and lower than log(2).

An alternative informal explanation to the goal of
the chosen cost function can be provided as follows:
let neurons parameters be represented by “V” shaped
functions – or high-dimensional “hull boat” shaped
function –, then each neuron must change its position
and concavity width in order to fit the pdf “valleys” or
“gaps” – so minimizing Eq. (3). This is specially suit-
able for finding straight valleys of multivariate density
functions.

Hereafter, the expression “neuron valley” is going to
stand for the “V” shaped or “hull boat” shaped func-

1The K-L divergence has some useful properties. Some of them,
particularly interesting here, are its invariance with respect to: (a)
data amplitude scaling and (b) monotonic nonlinear transformation,
like the sigmoidal activation functions of popular artificial neuron.

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 3

J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning 3

Fig. 1. Illustration of the function h(x) of a single neuron.

tion of each neuron, as well as the expression “neuron
valley bottom”, a point, line or hyperplane that corre-
sponds to the locus of the deepest points of a neuron
valley. Figure 1 provides an illustration to the concepts
conveyed here, for N = 2.

Note that any algorithm for neuron parameters adap-
tation based on the minimization of Ji provides a
kind of parametric entropy optimization, according to
N. Schraudolph [11]. Indeed, in [11] and references
therein, we can find a useful discussion about the so-
called binary information gain optimization.

3. The local (Hebbian) learning

Some strategies for optimizing neurons parameters
were tested. However, in this paper, only the simplest
online algorithm is presented, where all neuron param-
eters are adapted, by stochastic gradient descent, for
every new incoming data. Accordingly, for each new
incoming vector input, the i-th neuron must adapt its
j-th weight – corresponding to the synaptic efficiency
associated to the scalar input xj – and bias according
to Eqs (4) and (5).{

wk+1
i,j = wk

i,j + α∆ixj

wk+1
i,j = wk

i,j/‖wk
i,j‖

(4)

bk+1
i = bk

i + α∆i (5)

where ∆i = g(yi(1−y2
i))

(y2
i
+1)

and α corresponds to the learn-
ing rate.

4. Parameters setup

By assuming that no a priori knowledge about the
pdf which models the data source is available, in or-

der to reduce the chances of missing a pdf valley, we
propose the following weight matrix and bias vector
initialization:

(a) W is initialized with random numbers uniformly
distributed between −1 and +1;

(b) Each i-th row wi of W is then normalized, i.e.
‖wi‖ = 1;

(c) bi is initialized with random numbers uniformly
distributed between 0 and +1.

Note that steps (a), (b) and (c), together, are neces-
sary to fit the requirement presented in the Appendix.

5. The MLP-CLUST algorithm

An important feature of this algorithm is its depen-
dence on parameter g. The greater g is, the bigger the
number of pdf valleys seen by the neurons. Equiva-
lently, for high values of g, the cost function Eq. (1)
often presents a high number of local minima.

Indeed, for g → +∞ the neurons are able to find
any valley between any two non-overlapped samples.
Otherwise, for g → 0 (g > 0), if samples and neu-
ron weights are finite length vectors, the “V” shaped
function h(·) is so stretched that no neuron is able to
“find” even a wide valley inside the space spanned by
the samples.

These algorithmic aspects suggest a close relation-
ship between our approach and the Deterministic An-
nealing [9], where g and the temperature parameter
of [9] are inversely proportional.

Nevertheless, it is important to highlight one funda-
mental difference between the Deterministic Anneal-
ing (DA) and the proposed algorithm: while the DA
approach tries to find a global minimum by gradually
reducing the temperature parameter, each neuron of the

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 4

4 J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning

MLP-CLUST tries to find a local minimum of the cost
function. Therefore, although a gradual variation of g
is usefull, if it is done from bottom to top (Annealing),
all the neurons will converge to the same global min-
imum, i.e. the same valley, which, obviously, is to be
avoided here!

On the other hand, in order to investigate pdf valley
on several metric scales, we can set g to a high enough
initial value, and then to slowly decrease this parameter
to 0, i.e. a heating instead of an annealing strategy.

As a result, the whole MLP-CLUST can be summa-
rized as follows:

1. Raw input data is preprocessed as follows: let x
be an Ni-dimensional real valued column vector,
representing an input sample, and let xi be the
i-th element of x. Then each xi (1 � i � Ni) is
divided by the maximum absolute value among
all i-th inputs, from all input samples. Thus, all
input vectors are gathered inside a hypercube of
unitary edge;

2. g is initialized with a big enough g0.
A preliminary result based on the study of the sta-
bility points of the cost function Ji, for straight
valleys, provided the following helpful inequa-
tion: g0 � 2 × atanh(0.486)/GAPmin, where
GAPmin stands for the width of the narrowest
valley we are looking for. Clearly, GAPmin is
almost always unknown in real-world clustering
problems but, even a rough estimation of it can
be helpful in setting parameter g0 (note that, as
all input vectors are gathered inside a hypercube
of unitary edge, then GAPmin �

√
Ni, where

Ni stands for the dimension of the hypercube.);
3. α is initialized with small positive real;
4. Each neuron’s synaptic weights and bias are ran-

domly initialized, according to Section 4;
5. For nep = 1 to Nep epochs:

– Data samples are randomly presented as in-
puts;

– Weights and biases are updated according to
Eqs (4) and (5);

– g is linearly decreased by ∆g = g0/Nep;
– Weights of each neuron are normalized.

6. Automatic binary labels and cluster cardinality

An interesting feature of the MLP-CLUST is the
possibility of automatic cluster label generation. It can
be provided by the following simple procedure: given

an input sample (vector) xm, it comes form a cluster
whose label is given by:

L(xm) = sign(ym) (6)

where sign(·) stands for the signal function, whose out-
put is a ± 1 valued vector, and ym is the corresponding
NN output.

Note that each neuron output corresponds to one
bipolar bit in the label vector, as well as, in the MLP-
CLUST approach, each neuron contributes to between-
cluster boundary by providing a single hyperplane.
Therefore, if two clusters have labels almost identical,
differing by just one label bit, then they (the clusters)
are neighbors in the Ni-dimensional feature space, sep-
arated by one single hyperplane.

Defining a cluster as any Ni-dimensional subspace,
free of neuron hyperplanes, inside which lays at least
one input sample, we can estimate the total number of
clusters by feeding the neural network with all available
samples and counting the number of different labels.

In fact, when the number of neurons is high, such a
procedure often produces an also high and meaningless
number of clusters. For instance, even if clusters with
hundreds of samples are found, a single isolated sample
may be considered as being a cluster too.

Note, however, that as the number of neurons in-
creases, even when the gaps between clusters are not
clear (noisy case), the number of spurious small clus-
ters is limited, i.e. there is an upper bound proportional
to parameter g.

Nevertheless, in order to avoid the (possible) estima-
tion of a high number of too-small clusters, we empiri-
cally set that any cluster with cardinality below to 10%
of the biggest cluster cardinality is discarded.

It is worth noting that even (geometrically) small
clusters may have high cardinality. In fact, small but
relevant clusters frequently are related to very concen-
trated (picked) conditional probability densities (thus
providing high-cardinality clusters in sample datasets).

Another important issue concerning cluster cardinal-
ity is the dependence of each neuron parameter conver-
gence on the size (cardinality) of clusters in each side
of the boundary provided by the neuron. From Eqs (4)
and (5), it is clear that this dependence is stronger for
data points close to the boundary, and it is controlled by
parameter g. For instance, note that points far from the
boundary provide a ∆i close to zero. Consequently, as
parameter g decreases, the influence of cluster sizes on
the boundary positioning also decreases.

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 5

J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning 5

Fig. 2. Illustration of the use of more than one layer. T (·) stands for the nonlinear mapping of the first layer, while G1 and G2 are labels for
clusters 1 and 2, respectively.

7. Practical results and illustrations

In this section, some computational results are pre-
sented. The first one is based on artificial data, i.e. sam-
ples are generated throughout random number gener-
ator algorithms, in order to highlight some interesting
capabilities of the MLP-CLUST. On the other hand,
two experiments based on real data are also reported,
providing a more realistic scenario for testing the MLP-
CLUST capabilities.

7.1. Non-radial dispersion clusters

If more than one layer of neurons is used, the MLP-
CLUST is able to find even non-linear between cluster
boundaries. In order to provide a simple illustration,
Fig. 2 shows the result of the non-linear mapping of
each layer when a single layer is not enough to provide
a between cluster boundary.

Indeed, it is similar to what happens when an MLP
is adjusted with the backpropagation algorithm [4], in
classification (supervised) tasks. Nevertheless, it is
important to highlight that, here, all neurons in both
layers are locally adapted with the same Hebbian rule
of Eqs (4) and (5).

In this illustration, each neuron in the first layer finds
a conditional pdf valley. As a result, a single layer finds
4 clusters, but the neuron outputs are not close to ± 1,
as expected for well-separated clusters.

Finally, by using the first layer output as second
layer input, a single neuron is now enough to provide
a straight between cluster boundary. Moreover, since
the neuron output is quite close to ± 1, it can be used

as a evidence of the existence of 2 (not 4) clusters, and
that there is no need for more layers.

Nonetheless, we highlight that learning parameters
must be properly tuned in each layer, otherwise the
multilayer approach may fail in many ways (e.g. spu-
rious valleys may be generated by unappropriate non-
linear mapping in the first layer). Clearly, it raises
many questions that are not going to be addressed here.
For a while, we focus our investigation on single layer
capabilities.

7.2. Clustering italian wines data

For this experiment we use a wine data set, ac-
quired from the University of California (UCI Machine
Learning Repository). This data set consists of 13
continuous-valued features belonging to three physical
classes, corresponding to results from chemical analy-
sis of wine produced by three different cultivators from
the same region of Italy. This data set contains 178
feature vectors, with 59 in class 1, 71 in class 2, and 48
in class 3.

Note that we have classes, not clusters. However,
to compare the MLP-CLUST to others clustering algo-
rithms, we assume that those classes also form clusters
on the 13-dimensional feature space, as it was done
in [5] and references therein.

As a consequence, after clusters are estimated, we
put into correspondence cluster labels and classes la-
bels. Thus, samples whose cluster labels do not cor-
respond to the expected class labels are regarded as
“misclassifications”.

For this experiment, all sample vectors were mixed
up, and we used the following parameters: α = 10−6,

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 6

6 J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning

Fig. 3. A single run with the Wine dataset (UCI database).

Table 1
Performance comparison with italian wines data

Algorithm “misclassifications”

MLP-CLUST 08
Gustafson-Kessel (GK) 32
Gath and Geva (GG) 49
Fuzzy c-means (FCM) 54
Non-Euclidean FCM(NEFCM) 09

g was decreased from 2 to 1 for Nep = 2000 epochs,
with a single layer of 50 neurons.

Figure 3 shows a single run of th MLP-CLUST with
the Wine dataset, where a stable configuration of 3
clusters is clearly found for 1.25 < g < 1.75.

Results presented in Table 1 are averaged and
rounded “misclassications”. That is, we evaluate the
MLP-CLUST performance by computing the number
of “misclassications” for g ≈ 1.5, over 10 independent
runs, and then these results are averaged and rounded.

As we can see, the MLP-CLUST outperforms the
other algorithms with this specific dataset. It indi-
cates that classes indeed correspond to clusters and that,
probably, between-classes separations are well approx-
imated by 13-dimensional hyperplanes in this case.

7.3. Ultrasonic data

For this experiment with the MLP-CLUST, we have
used parameters extracted form echoed ultrasound
pulses as input samples [1]. These pulses were ob-
tained from ultrasound sensors placed in front of 6
kinds (classes) of reflectors, 50 cm far form the pulse
source. The 6 kinds of reflectors can be summarized as
follows:

– Convex wall corner, 90◦ (Class #1);
– Chair leg, circular transversal section (Class #2);
– Table leg, circular transversal section (Class #3);
– Concave wall corner 90o (Class #4);
– Flat wall (Class #5);
– Table leg, squared transversal section (Class #6).

And the pulse parameters to be clustered are: total
area under the pulse shape and pulse duration.

Note that the use of only two pulse parameters is
a helpful choice in order to provide graphical illustra-
tions. Nevertheless, there is no theoretical limitation
to the number of such parameters. Indeed, when the
parameters are statistically dependent, the use of higher
dimensional spaces (more parameters), can even facil-
itate the clustering task.

Figure 4 presents the 2-dimensional samples disper-
sion, labeled according to their classes. It is clear that
there exist a strong relationship between pulse classes
and clusters, and even classes 4 and 5 can be considered
as almost separated radial clusters.

For this experiment with a single layer MLP-CLUST,
all samples were mixed up, without their class labels,
and we used the following parameters: α = 10−4, g
was decreased from 10 to 2 for Nep = 400 epochs. In
order to not overcharge Fig. 5 with too many lines, only
100 neurons were used.

Figure 5 presents a single but representative trial with
the MLP-CLUST, where subfigures are used to show
the “neuron locus” evolution during the run (i.e. each
line on subfigures represents a linear boundary provided
by one neuron, which corresponds to the locus of points

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 7

J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning 7

Fig. 4. Two-dimensional plot of ultrasonic pulse parameters.

(x1, x2) for which the equation wi,1x1 +wi,2x2 +bi =
0 holds, where i stands for the neuron index).

Accordingly, the number of clusters, nG, estimated
by the beginning of the algorithm run (from right to
left) is high. On the other hand, when “temperature”
starts to increase or, equivalently, g decreases, more
neighbor samples are clustered together (not necessar-
ily according to the Euclidean distance).

Thus, this temporal evolution of nG with parameter
g tends to be a decreasing one, staying constant for long
intervals of g when a stable clustering pattern is found.
In other words, when neurons find relevant pdf valleys,
they are trapped for longer intervals of g.

Note that, while g is decreased (heating process)
the number of estimated clusters, nG, gradually tends
to one (trivial solution were all samples are clustered
together).

This gradual variation of nG with g, which in some
sense controls the metric scale of the pdf valley search,
suggests a cluster hierarchy.

Figure 6 illustrates a hierarchic interpretation of clus-
ters provided by the MLP-CLUST. This interpretation

is made clear by observing the cluster labels (see Sec-
tion 6) and comparing then by Hamming distance mea-
sures. As a result, and given the closer relationship
between classes and clusters in this particular case, we
can also show this hierarchical interpretation by using
class labels, as shown in Fig. 6.

Moreover, according to the authors of the experiment
with ultrasound pulses, pulses from flat wall (Class #5)
and pulses from concave wall corner (Class #4) are
quite similar, and both are also similar, in a lesser de-
gree, to the pulses from large table lags with squared
transversal section (Class #6). Note that this “reason-
ing” is automatically provided by the algorithm output.

When it is compared to the classical K-means, with
the same data set, the first remarkable difference is
that we must provide the K-means with the number of
clusters.

Once it is provided, and referring to as good results
the clustering output where cluster centers lay close to
class centers, there are no warranties that the K-means
algorithm is going to converge to this good result.

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 8

8 J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning

Fig. 5. A single run with ultrasonic data.

Fig. 6. Hierarchic tree suggested by the algorithm.

We experimentally found that, for this problem,
about 25% of trials with the K-means converged to
good results.

On the other hand, the MLP-CLUST provides a flex-
ible probability of correctly estimating the number of
clusters and, moreover, to obtain a good result. Indeed,

the probability Pn of not missing a valley of width ∆r
depends on both ∆r and the number of neurons Nn

according to a Binomial distribution, which yields:

Pn = 1 − (1 − Pa)Nn

where

Pa =
∆r

2πN

π/2∫
−π/2

. . .

π/2∫
−π/2

c(α1, . . . , αN)

dα1 . . . dαN (7)

c(α1, . . . , αN)=cos


atan




√√√√ N∑
n=1

tan(αn)2







N = Ni − 1 and Ni is the feature space dimension.
These two formulae are explained in the Appendix.

It is interesting to highlight that, with only 100 neurons,
in both theoretical and numerical (over 100 independent
trials) results, the probability of success on finding all
relevant valleys and providing good results was about
81%. Moreover, by increasing the number of neurons
we are able to arbitrarily improve this result.

8. Conclusions

A new connectionist algorithm for data clustering
was presented: the MLP-CLUST, based on local (Heb-

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 9

J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning 9

Fig. 7. Pa calculation on 2D.

bian) adaptation of artificial neurons with sigmoidal
activation functions.

Some interesting algorithm characteristics are: (a)
its implementation simplicity, where each neuron is lo-
cally adapted every time a new incoming data is pro-
vided, and (b) it is rather a probabilistic approach (in-
stead of a geometric one) though, unlike classical prob-
abilistic approach, e.g. the EM algorithm, the MLP-
CLUST estimates just partially the data pdf. Indeed,
it just looks for pdf valleys, what keeps this new algo-
rithm simpler than the classical EM based clustering
approach.

It was also indicated that, with at least two layers
of neurons locally adapted – i.e. the same Hebbian al-
gorithm applied to all neurons – it is possible to es-
timate nonlinear between-clusters boundaries, though
we highlight, in Section 7.1, that it raises some im-
portant questions concerning the tuning of parameters
in both neuron layers, what was not yet studied. On
the other hand, it is easy to show that even a single
layer of self-organized neurons is able to fit piecewise
linear between-cluster boundaries. In other words, it
is able to fit even boundaries between non-ellipsoidal
clusters. Note that, though we observed this capability
in many practical experiments, it also raises many ques-
tions concerning algorithm convergence properties for
shallow pdf valleys (piecewise liner boundaries usually
are “seen” by neurons as shallow marginal pdf valleys),
to be addressed in the sequel of this work.

Unlike classical supervised MLP, which suffers from
over-dimensioning, the MLP-CLUST has its success
probability increased whenever the number of neurons
is increased.

Fig. 8. Pa calculation on 3D.

Another attracting aspect of the proposed algorithm
is that it provides one bipolar label to each estimated
cluster, where such labels keep geometric relationship
similar to that of clusters: closer labels (in Hamming
distance) point to closer clusters (in Euclidean dis-
tance).

Finally, a useful tool provided by the bipolar labels,
together with the heating strategy, is the possibility of
a hierarchical interpretation of more than one stable
cluster partitioning.

Important questions to be properly addressed in fu-
ture works are mainly related to the existence of sta-
ble solution and the study of algorithm convergence
aspects. For instance, if a continuous spread of input
samples comes from a uniform pdf, clearly, it does not
present pdf valleys to be fit by the neurons. As a conse-
quence, given that data is mapped into a hypercube of
unitary edge, all neurons will diverge toward the out-
side of this hypercube, and a single cluster is “seen”.
On the other hand, if even a shallow pdf valley does
exist (a marginal pdf valley, for instance), it always can
trap neurons for high enough values of parameter g.
Consequently, the study of how to optimize g in order
to accelerate algorithm convergence remains an open
issue.

Furthermore, in the sequel of this work, we are going
to address some important missing points, such as: (a)
the application of the algorithm to an unlimited stochas-
tic data source, such as a communication channel model
and, by this way, to evaluate the MLP-CLUSTER per-
formance on channel equalization/identification, ac-
cording to some theoretical issues presented in [8]; and
(b) a study of how parameters g and α influence the
algorithm performance, including stability and conver-
gence issues.

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 10

10 J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning

Fig. 9. Theoretical and experimental values of Pa versus dimension.

Acknowledgments

This work was partially granted by both the Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq) and the Fundação de Amparo à Pesquisa –
Sergipe (FAP-SE).

Appendix: Analytic calculation of Pa

Given two clusters whose centers are separated from
each other by ∆r, Pa corresponds to the probability of
a single neuron, initialized as in Section 4, to have its
“neuron valley bottom” (see Section 2) crossing the line
segment that links the two centers. Here we assume, by
simplification, that there is a pdf valley bottom along the
line linking the two centers, and that any neuron whose
“neuron valley bottom” crosses this line is able to find
the valley position and orientation through adaptation.

If many clusters are to be considered, Pa may corre-
spond to a lower bound if ∆r is the distance between
the two closest centers.

In a 2-dimensional feature space, the probability Pa

is analogous to that of a line randomly placed – so that
it must intersect the unity circle – crossing the needle
(or a piece of wire) of length ∆r inside this circle (see
Fig. 7).

As a consequence, α, the angle between the nee-
dle and an axis normal to the above mentioned line,
is a random variable with flat pdf f(α) = 1/π,
−π/2 � α � π/2. And then, given an instance
of α, it is easy to see, in Fig. 7, that the probabil-
ity of intersection between needle and line is given by
P (α) = ∆r cos(α)/2. Therefore, the averaged proba-
bility over all direction is given by the integral:

Pa =

π/2∫
−π/2

f(α)P (α)dα

(8)

Pa =
∆r

2π

π/2∫
−π/2

cos(α)dα =
∆r

π

By analogy, in a 3-dimensional feature space, where
the line is replaced by a plane g(x, y) = tan(αx)x +
tan(αy)y+c that intersects the unity sphere,depicted in
Fig. 8, and where αx and αy are, respectively, the plane
slopes in the corresponding orthogonal direction, it is
clear that the maximum slope is the gradient magnitude,
given by ‖∇g‖ =

√
tan(αx)2 + tan(αy)2.

That is, the (maximum) slope angle through the
direction pointed by the gradient vector is α =
atan(‖∇g‖). Consequently, as it is illustrated in

Galley Proof 9/02/2007; 10:44 File: ifs365.tex; BOKCTP/ljl p. 11

J.R.M. Filho et al. / Clustering with multilayer perceptrons and self-organized (Hebbian) learning 11

Fig. 8, given αx and αy , the probability that the
plan crosses the needle is P (αx, αy) = ∆r cos(√

tan(αx)2 + tan(αy)2)/2, and the averaged proba-
bility over all directions, in this case, is then:

Pa =

π/2∫
−π/2

· · ·
π/2∫

−π/2

f(αx, αy)P (αx, αy)dαxdαy

where f(αx, αy) = 1/π2,−π/2 � αx, αy � π/2 is a
joint flat pdf, yielding:

Pa =
∆r

2π2

π/2∫
−π/2

· · ·
π/2∫

−π/2

c(αx, αy)dαxdαy

where c(αx, αy) = cos(atan
√

tan(αx)2 + tan(αy)2).
Finally, Eq. (7) is a straightforward generalization

of the former deduction for feature space dimensions
greater than two. Figure 9 shows values of Pa versus
feature space dimension from 1 to 60. The rugged lines
correspond to estimations of Pa through Monte-Carlo
simulation (i.e. 500.000 random neuron initialization
and verification whether the “neuron valley bottom”
was or not crossing the line linking two centers sep-
arated from each other by ∆r), while the continuous
lines represent the computation of Pa with Eq. (7).

References

[1] A.R. Almeida, E.O. Freire, C.A. Rennó, J.E.S. Vianna and
R.M. Rosi, Neural Network Recognition of Geometric Refer-
ences Applied to Ultrasound Echo Signals, Proceedings of the
IEEE 43rd Midwest Symposium on Circuits and Systems –
MWSCAS’2000, 2000.

[2] C.C. Calvacante, J.R. Montalvão, B. Dorizzi and J.C.M Mota,
A neural predictor for blind equalization of digital communi-
cation systems: Is it plausible? IEEE Neural Networks for
Signal Processing (NNSP 2000), December 2000, 11–13.

[3] R.O. Duda and P.E. Hart, Pattern Classification and Scene
Analysis, Wiley-Interscience, New York, 1973.

[4] S. Haykin, Neural Networks, A Comprehensive Foundation,
(2 edition), Prentice-Hall, Englewood Cliffs, USA, 1999.

[5] N.B. Karayiannis and M.M. Randolph-Gips, Soft learning
vector quantization and clustering algorithms based on non-
euclidean norms: Multinorm algorithms, IEEE Trans. Neural
Networks 14(1) (January 2003), 89–102.

[6] G.W. Milligan and M.C. Cooper, An examination of proce-
dures for determining the number of clusters in a data set,
Psychometrika, 1985, 159–179.

[7] S. Mitra, S.K. Pal and P. Mitra, Data mining in soft compu-
tating framework: A survey, IEEE Trans. on Neural Networks
13(1) (January 2002), 3–14.

[8] J.R. Montalvªo, B. Dorizzi and J.C.M. Mota, Channel estima-
tion by symmetrical clustering, IEEE Trans. on Signal Pro-
cessing 50(6) (June 2002), 1459–1469.

[9] K. Rose, Deterministic annealing for clustering compression,
classification, regression and related optimization problems,
Proceedings of the IEEE 86(11) (December 1998), 2210–
2239.

[10] W.S. Sarle, Cubic clustering criterion, Technical Report A-
108, SAS Institute Inc., Cary, NC, 1983.

[11] N. Schraudolph, Optimization of Entropy with Neural Net-
works, PhD thesis, University of California, San Diego, 1995.

